人们对偶然现象(即随机现象)规律性的探求,经历了相当长的历史时期。
一、古典概率时期(十七世纪)
17世纪50年代的法国流行用牌和骰子赌博,这是当时社会的一种时尚。一名性情急躁的赌徒梅尔在巴黎找到著名的数学家和哲学家帕斯卡,向他讨教在一次赌博中取胜的机会有多大等问题,引起了帕斯卡的重视。1654年7月30日,帕斯卡将自己的解法写信告诉数学家费马,后来惠更斯参加了他们的讨论,并将解法写进了他的著作《论赌博中的计算》。这是最早的概率论论著。他们的计算都有按赢得整局赌博的概率的比例来分赌本的思想,即朴素的数学期望的思想,开创了概率论研究的先河。
二、初等概率时期(十八世纪)
在这个期间,法国杰出的数学家德莫哇佛尔最早研究了随机变量服从正态分布的情形,发现了正态概率分布曲线。这一重大发现有着不可磨灭的功绩,因为在众多的随机现象中,服从正态分布的随机现象是占绝大多数的。接着,他又发现,许多分布的极限正态分布,并证明了二项分布当p=q=1/2的情形。这种证明某一分布的极限是正态分布的各种定理,以后发展成概率论的一个重要组成部分—中心极限定理。
1740年,英国数学家泊松的《机会的性质与规律》出版。在书里,他所研究的问题中有一个对产品剔废及检查很重要的问题,这就是现在常用到的多项分布的情形。
三、分析概率时期(十九世纪)
在这个时期,概率论工作者较好地应用数学工具,使概率论的理论更加严密,基本上完成了概率论作为数学的一个分支应具备的条件。拉普拉斯1812年在巴黎出版了他的经典著作《分析概率论》。这部著作对十八世纪概率论的研究成果作了比较完美的总结,内容包括几何概率、贝努利定理、最小二乘法等。他还明确了概率的古典定义,证明了中心极限定理中的德莫哇佛尔—拉普拉斯形式,发展了概率论在观察和测量误差方面的应用。
法国数学家泊松通过研究,发现了在概率论中占重要地位的一个分布—泊松分布。他还推广了大数定律,在1837年他的《关于民型审判的概率研究》著作中,第一次提出了“大数定律”这一名称。泊松还是第一个把概率论用到解决射击问题上的数学家。
十九世纪后半叶概率论有了很大的发展,这是同俄国的几位数学家的努力分不开的。布尼亚科夫斯基为了在俄国推广概率论,1846年出版了俄罗斯的第一本教科书《数学概率论基础》。此外,他广泛地在俄国推行把概率论应用到统计学,特别是在保险事业和人口统计上也是卓有功绩的。
布尼亚科夫斯基的优秀学生切比雪夫发表的概率论论文虽然只有四篇,但它们对后来概率论的影响是难以评价的。以他的名字命名的切比雪夫不等式。同时,他作为基础知识在概率论和数理统计中起着十分重要的作用。切比雪夫的概率论思想为后来俄罗斯概率论学派的杰出工作奠定了基础。按研究的性质来说,这个学派的活动大致可分为两个时期:第一个时期代表人物有马尔科夫,李雅普诺夫。这个时期的特征是研究独立随机变量叙列和马尔科夫链概型。第二个时期的代表人物是辛钦和柯尔莫哥洛夫。这个时期的特征是将实变函数的观点和方法引入概率论中。切比雪夫的学生马尔科夫研究了一种离散的随机序列,这种序列的特点是“无后效性”。后来人们称之为马尔科夫链”。广义的理论后来成为一类独立的学科—随机过程。马尔科夫还推广了大数定律和中心极限定理的应用范围。切比雪夫的另一个学生李雅普诺夫证明了较广泛条件下的中心极限定理。为了证明这个定理,他创造了特征函数方法。这种方法已成为概率论的基本工具之一。
四、现代概率时期(二十世纪)
二十世纪以来,概率论有了很大的发展。1933年,柯尔莫哥洛夫顺应潮流,在他的《概率论的基本概念》一书中,叙述了他的定义。这个定义以勒贝格测度为理论基础,抓住概率的有界性、非负性、可加性三条最基本的性质来定义概率。这种定义在逻辑关系上和别的数学分支完全相仿,从而使概率论成为一个严谨的数学分支。
二十世纪以来,美籍南斯拉夫数学家费勒及法国数学家列维在极限理论方面开展了一系列有益的研究工作。1935年,费勒找到了满足中心极限定理的充要条件,后来数学界称这个条件为费勒条件。费勒在马尔科夫过程论的研究中对首先引用半群理论作了很有意义的研究。对现代数理统计作出决定性贡献的是英国数学家费歇尔。他以医学、生物实验为背景,提出了似然方法;开创了试验设计、方差分析;确立了统计推断的基本方法(二、三十年代)。原籍波兰的美国数学家奈曼和皮尔逊,从1928年起,建立了严格的假设检验理论。1946年,瑞典数学家克拉梅尔出版了《统计数学方法》。这部著作收集了半个多世纪以来的数理统计研究成果。它的出现,标志着数理统计作为一门独立的数学分支正式确立。
随机过程产生是近代概率论发展的重要标志之一。古典概率论主要研究随机事件的概率或随机变量的分布,而现代概率论则主要研究无穷多个随机变量的集合,即研究随机过程。继马尔可夫链产生后,柯尔莫哥洛夫建立了马尔科夫过程的一般理论;美国数学家维纳由于研究控制论的需要,首先讨论了平稳过程的预测理论;1934年,苏联数学家辛钦建立了平稳随机过程理论;1937年,克拉梅尔开始研究随机过程的统计理论;美国数学家杜勃进一步研究随机过程,在经典鞍论上做了发展性的工作。
随机过程按研究的性质分类,又可分为马氏过程,平稳过程,软、正态过程,点过程等。它与其它学科结合,又产生了许多边沿分支:与微分方程、数理统计、数论、几何、计算、数学相结合,出现了随机微分方程、过程统计、数论中的概率方法、几何概率、计算概率等等。近十年间,还出现了无穷质点的随机过程、点过程现代理论、马氏过程与位势论等新研究方向。
1955年,在美国数学年会上,第一次提出了“应用概率”。这种应用性很强的研究方向,在社会科学数量化、精确化中;在日益需要的自动控制和管理学中,越来越受到人们的重视。应用概率的诸分支又有:排队论、可靠性理论、马尔科夫决策规划、对策论、信息论、随机规划等等,还有与其它学科的结合分支:生物统计、药学统计、军事统计、气象统计、水文统计等等。
可以预见,随着科学技术的发展,概率论的理论与应用也将得到更大的发展。作为数学的分支,概率论的高度抽象性、广泛应用性、体系严谨性的特点在发展中将愈来愈明显地显示出来。